Home
Class 12
MATHS
Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1...

Prove that `cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]=(x)/(2),x in(0,(pi)/(4))`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTIONS PAPER - III (UNSOLVED)

    ACCURATE PUBLICATION|Exercise SECTION - D|6 Videos
  • SAMPLE QUESTIONS PAPER - III (UNSOLVED)

    ACCURATE PUBLICATION|Exercise SECTION - B|8 Videos
  • SAMPLE QUESTION PAPER-X (UNSOLVED)

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 6 MARKS:|56 Videos

Similar Questions

Explore conceptually related problems

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

Differentiate w.r.t. x the function : cot^-1[(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))], 0

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

Prove that cot^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)+(1)/(2)cos^(-1)x

Differentiate w.r.t x : cot^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2

Differentiate w.r.t. 'x' tan^-1{(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))}, 0

If y = cot^-1{(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} 0 dy/dx is independent of x.