Home
Class 8
MATHS
(x^(b)/(x^(c)))^(a)xx(x^(c)/(x^(a)))^(b)...

`(x^(b)/(x^(c)))^(a)xx(x^(c)/(x^(a)))^(b)xx(x^(a)/(x^(b)))^(c)=1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWER

    NAND LAL PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE (Long Answer Type Questions)|1 Videos
  • EXPONENTS AND POWER

    NAND LAL PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE (HOTS) (High Order Thinking Skill)|2 Videos
  • EXPONENTS AND POWER

    NAND LAL PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE (Objective Type Questions)|18 Videos
  • DIRECT AND INVERSE PROPORTIONS

    NAND LAL PUBLICATION|Exercise SAMPLE PAPER FOR PRACTICE ( Fill in the blanks ) |17 Videos
  • INTRODUCTION TO GRAPHS

    NAND LAL PUBLICATION|Exercise SAMPLE PAPER FOR PRACTICE |27 Videos

Similar Questions

Explore conceptually related problems

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

If f(x)=|((x-a)^(4),(x-a)^(3),1),((x-b)^(4),(x-b)^(3),1),((x-c)^(4),(x-c)^(3),1)|" then "f'(x)=lambda.|((x-a)^(4),(x-a)^(2),1),((x-b)^(4),(x-b)^(2),1),((x-c)^(4),(x-c)^(2),1)| . The value of lambda is

if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+b+c) where a,b,c are all different then the determinant |{:(1,,1,,1),((x-a)^(2),,(x-b)^(2),,(x-c)^(2)),((x-b)(x-c),,(x-c)(x-a),,(x-a)(x-b)):}| vanishes when

Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|= |(1+a x)^2(1+b x)^2(1+c x)^2(1+a y)^2(1+b y)^2(1+c y)^2(1+a z)^2(1+b z)^2(1+c z)^2|=2(b-c)(c-c)(a-b)xx(y-z)(z-x)(x-y)dot

If g(x)=(f(x))/((x-a)(x-b)(x-c)), where f(x) is a polynomial of degree lt3, then prove that (dg(x))/(dx)=|{:(1,a,f(a)(x-a)^(-2)),(1,b,f(b)(x-b)^(-2)),(1,c,f(c)(x-c)^(-2)):} |divide|{:(a^(2),a,1),(b^(2),b,1),(c^(2),c,1):}|.

If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree 0 b. 1 c. 2 d. 3

If a^2+b^2+c^2=-2 , and f(x)= |{:(1+a^2x,(1+b^2)x,(1+c^2)x),((1+a^2)x,1+b^2x,(1+c^2)x),((1+a^2)x,(1+b^2)x,1+c^2x):}| , then f(x) is a polynomial of degree

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)

If 3x=a+b+c, then the value of (x-a)^3+(x-b)^3+(x-c)^3-3(x-a)(x-b)(x-c) is