Home
Class 8
MATHS
Simplify : (ab + bc)^2 – 2ab^2c...

Simplify : `(ab + bc)^2 – 2ab^2c`

Text Solution

Verified by Experts

The correct Answer is:
`c ^(2)`
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    SWAN PUBLICATION|Exercise EXERCISE 9.4|18 Videos
  • COMPARING QUANTITIES

    SWAN PUBLICATION|Exercise Exercise 8.3|20 Videos

Similar Questions

Explore conceptually related problems

Find the following squares by using the identities. (ab+bc)^2-2ab^2c

(5x + 2y) ( 5x - 2y) can be simplified using the identity. a. (x +b) ^(2) = a ^(2) + 2 ab + b ^(2) b. (x -b) ^(2) = a ^(2) - 2 ab + b ^(2) c. (a +b)(a -b) = a ^(2) - b ^(2) d. none

Add the following: ab – bc, bc – ca, ca – ab

Factorise a^2 – 2ab + b^2 – c^2

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Add the following: a – b + ab, b – c + bc, c – a + ac

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,ca,ab)|=(a-b)(b-c)(c-a)(ab+bc+ca)