Home
Class 12
MATHS
If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k)...

If `vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k)`, find the value of `vec(OB)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 1 (Short Answer Type Questions - I)|8 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 1 (Short Answer Type Questions - II)|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - hat(j) + 7hat(k) and vec(b) = 5hat(i) - hat(j) + lambda hat(k) , then find the value of lambda so that vec(a) + vec(b) and vec(a) - vec(b) are perpendicular vectors.

If the position vectors of vec(A) and vec(B) are 3hat(i) - 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) the length of vec(AB) is

If vec(a) = 2hat(i) - 3hat(j) + 4hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c ) = 3hat(i) + 4hat(j) - hat(k) , then find vec(a).(vec(b) xx vec(c )) and (vec(a) xx vec(b)).vec(c ) . Is, vec(a).(vec(b) xx vec(c )) = (vec(a) xx vec(b)).vec(c ) ?

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .

Let vec(a) = hat(i) + 4hat(j) + 2hat(k), vec(b) = 3hat(i) - 2hat(j) + 7hat(k) and vec(c )= 2hat(i) - hat(j) + 4hat(k) . Find a vector vec(p) which is perpendicular to both vec(a) and vec(b) and vec(p).vec(c ) = 18 .

Let vec(a) =hat(i) +2hat(j) +hat(k),vec(b) =hat(i) -hat(j) +hat(k) and vec(c ) =hat(i) +hat(j) -hat(k) , vector in the plane of vec(a) and vec(b) whose projection on vec(c ) is 1/(sqrt(3)) is ______.

If vec(a) = 3hat(i) - hat(j) and vec(b) = 2hat(i) + hat(j) - 3hat(k) then express vec(b) in the form of vec(b) = vec(b_(1)) + vec(b_(2)) where vec(b_(1))||vec(a) and vec(b_(2)) perpendicular to vec(a) .

If vector bar(AB) = 2 hat(i) - hat(j) + hat(k) and bar(OB) = 3 hat(i) - 4hat(j) + 4 hat(k) , find the position vector bar(OA)