Home
Class 12
MATHS
Find the unit vector perpendicular to th...

Find the unit vector perpendicular to the plane ABC where the position vectors A, B and C are `2hat(i) - hat(j) + hat(k), hat(i) + hat(j) + 2hat(k)` and `2hat(i) + 3hat(k)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 4 (Short Answer Type Questions - II|7 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 2 (Short Answer Type Questions - II)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda , if the point with position vectors 3hat(i) - 2hat(j) - hat(k), 2hat(i) + 3hat(j) - 4hat(k), -hat(i) + hat(j) + 2hat(k) and 4hat(i) + 5hat(j) + lambda hat(k) are coplanar.

Find the unit vector perpendicular to both the vectors vec(a) + vec(b) and vec(a) - vec(b) where vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) + 2hat(j) + 3hat(k) .

The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

If the position vectors of vec(A) and vec(B) are 3hat(i) - 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) the length of vec(AB) is

If the vectors 2hat(i) + 3hat(j) - 6hat(k) and 4hat(i) - m hat(j) - 12 hat(k) are parallel find m.

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

Find the sine of the angle between the vectors hat(i) + 2 hat(j) + 2 hat(k) and 3 hat(i) + 2 hat(j) + 6 hat(k)

Find the sum of vectos a = hat(i)- 2hat(j)+hat(k),b=-2hat(i)+4hat(j)+5hat(k) and c=hat(i)-6hat(j)-7hat(k) .

Find the direction cosines of vector, 2hat(i) + hat(j) + 3hat(k) .