Home
Class 12
MATHS
Find the value of lim(x rarr 0) (10^x-2^...

Find the value of `lim_(x rarr 0) (10^x-2^x-5^x+1)/(x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x sin x)

lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x tan x)

lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x tan x)=

lim_(x rarr 0) [(10^(x)-2^(x)-5^(x)+1)/(x . tan x)] =

Evaluate: lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x tan x)

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

The value of lim_(x rarr0)(1-cos2x sec3x)/(x^(2)) is

Evaluate : lim_(x rarr0)(2x-1)

Evaluate lim_(x rarr 0) [(10^x - 2^x - 5^x + 1)/( x tanx)]