Home
Class 12
MATHS
If y=tan^-1((1+x)/(1-x)), then dy/dx is ...

If `y=tan^-1((1+x)/(1-x))`, then `dy/dx` is equal to

A

`1/(1+x^2)`

B

`-1/(1+x^2)`

C

`pi/4+tan^-1x`

D

`tan^-1x`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y= sec (tan^(-1) (x)) , then dy/dx at x=1 is equal to ......... A) 44198 B) 1 C) 1/sqrt 2 D) sqrt 2

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If y=tan^(-1)((sqrt(1+x^2)-1)/x) , then y'(1) is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

If y = sqrt((1 + x)/(1 -x)) " then " (dy)/(dx) = ?

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to