Home
Class 12
MATHS
If x sqrt (y+1) + y sqrt (x+1) =0 and x ...

If x `sqrt (y+1)` + y `sqrt (x+1)` =0 and x `!=` y then dy/dx=............ A) `frac{1}{(1+x)^2}` B) `- frac{1}{(1+x)^2}` C) `(1+x)^2` D) `- frac{x}{x+1}`

A

`1+x`

B

`(1+x)^-2`

C

`-(1+x)^-1`

D

`-(1+x)^-2`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^y = e^(x-y) , then dy/dx = ............ A) frac{1 + x}{1+ log x} B) frac{log x}{(1+ log x)^2} C) frac{1- log x}{1+ log x} D) frac{1 - x}{1+ log x}

If x^y = e^(x-y) , then dy/dx = ............ A) frac {log x}{(1+logx)^2} B) frac {1+x}{1+logx} C) frac {2+x}{1+logx} D) frac {3+x}{1+logx}

If y= sqrt (log x + sqrt (log x + sqrt (log x + .......oo))) , then dy/dx =....... A) frac{1}{2y-1} B) frac {1}{x(2y-1)} C) frac {1}{2xy} D) frac {1}{x(y-1)}

If y= sin^(-1) (frac{5x+ 12 sqrt (1-x^2)}{13}) , then (dy/dx) = .......... A) 0 B) frac {-1}{sqrt (1-x^2)} C) frac {1}{sqrt (1-x^2)} D) sqrt (1-x^2)

If y= cot^(-1)(frac {1-3x^2}{3x - x^3}) , then dy/dx =....... A) frac{3}{1+x^2} B) frac{2}{1-x^2} C) frac{1}{1+x^2} D) frac{1}{3(1+x^2)}

If sqrt (1- x^2 ) + sqrt (1- y^2 ) = a(x-y), then show that dy/dx = sqrt ( frac{1- y^2 }{1- x^2 } )

If y= tan^(-1) (sqrt (frac {a-x}{a+x})) , where -a < x < a then dy/dx = ........ A) frac{x}{sqrt (x^2 + a^2)} B) frac{a}{sqrt (a^2 + x^2)} C) frac{1}{2 sqrt (a^2 - x^2)} D) -frac{1}{2 sqrt (a^2 - x^2)}

If y= sin(2 sin^(-1) x) , then dy/dx= ............ A) frac{2-4x^2}{sqrt (1-x^2)} B) frac{2+4x^2}{sqrt (1-x^2)} C) frac{4x^2 - 1}{sqrt (1-x^2)} D) frac{1-2x^2}{sqrt (1-x^2)}

If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y) , then show that dy/dx = sqrt (frac{1-y^2}{1-x^2})