Home
Class 12
MATHS
If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2...

If `x=(e^t+e^(-t))/2` and `y=(e^t-e^(-t))/2`, then `dy/dx=`

A

`-x/y`

B

`x/y`

C

`-y/x`

D

`y/x`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation x = (e ^(t) + e ^(-t))/(2), y = (e ^(t) -e^(-t))/(2), t in R, represents

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x= a(t-(1/t)), y=a(t+(1/t)) , then show that dy/dx = x/y

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If y=e^(sin^-1(t^2-1))andx=e^(sec^-1(1/(t^2-1))),then (dy)/(dx) is

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =