Home
Class 12
MATHS
If x=t^(2) and y=t^(3)+1, then (d^(2)y)/...

If `x=t^(2)` and `y=t^(3)+1`, then `(d^(2)y)/(dx^(2))` is

A

`3/(4t)`

B

`(3t)/4`

C

`4/(3t)`

D

`(4t)/3`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=log(1+t^2) and y=t-tan^-1 t , then dy/dx is

If x=3 cos t and y=4 sin t , then (d^2y)/(dx^2) at the point (x_0,y_0)=(3/2sqrt2,2sqrt2) ,is

If x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is

IF x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is