Home
Class 12
MATHS
If y=x^(2)+2x+3, then (d^(2)x)/(dy^(2)) ...

If `y=x^(2)+2x+3`, then `(d^(2)x)/(dy^(2))` =

A

`1/(2(x+1)^3)`

B

`(-1)/(4(x+1)^3)`

C

`1/2`

D

`1/(8(x+1)^4)`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

If y=e^(2x) , then (d^2y)/(dx^2)*(d^2x)/(dy^2) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=x^(x^2) , then dy/dx=

If x=at^2,y=2at , then (d^2x)/(dy^2)=

If y=x+e^x , then (d^2x)/(dy^2) is equal to

If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is

If x=a sec^2 theta,y=a tan^2 theta , then (d^2x)/(dy^2)=

If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " then" (d^(2) y)/(dx^(2)) is equal to