Home
Class 12
MATHS
If y=x+e^(x), then (d^(2)x)/(dy^(2)) is...

If `y=x+e^(x)`, then `(d^(2)x)/(dy^(2))` is

A

`e^x`

B

`- e^x/((1+e^x)^3)`

C

`- e^x/((1+e^x)^2)`

D

`1/((1+e^x)^3)`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

If y=x^(2)+2x+3," then "(d^(2)x)/(dy^(2))

If y=x+e^x , then (d^2x)/(dy^2) is equal to

If y=x^(x^2) , then dy/dx=

If y=e^(2x) , then (d^2y)/(dx^2)*(d^2x)/(dy^2) is equal to

If x=at^2,y=2at , then (d^2x)/(dy^2)=

If y=e^(tan x) , then cos^2 x(d^2y)/(dx^2) is equal to

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to