Home
Class 12
MATHS
If y=e^(2x), then (d^2y)/(dx^2)*(d^2x)/(...

If `y=e^(2x)`, then `(d^2y)/(dx^2)*(d^2x)/(dy^2)` is equal to

A

`e^(-2x)`

B

`-2e^(-2x)`

C

`2e^(-2x)`

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=A sin 5x, then (d^2y)/(dx^2) =

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=e^(tan x) , then cos^2 x(d^2y)/(dx^2) is equal to

If x^2y^3=(x+y)^5 , then (d^2y)/(dx^2) is

If y=x+e^x , then (d^2x)/(dy^2) is equal to

If y= log x , then find (d^2y) / (dx^2)

If x^y=2^(x-y) , then dy/dx is

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=