Home
Class 12
MATHS
sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))...

`sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]`=

A

`(-2x)/(sqrt(1-x^2))+1/(2sqrt(x-x^2))`

B

`(-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2))`

C

`1/(sqrt(1-x^2))+1/(2sqrt(x-x^2))`

D

None of these.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)[xsqrt(1-x)-sqrtxsqrt(1-x^(2))], find (dy)/(dx),

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)}) = frac{pi}{4}-frac{1}{2}cos^-1x , for -frac{1}{sqrt2} le x le1

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Given , 0lexle(pi)/(2) , then the value of tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

int_(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx=