Home
Class 12
MATHS
If x=log(1+t^2) and y=t-tan^-1 t, then d...

If `x=log(1+t^2)` and `y=t-tan^-1 t`, then `dy/dx` is

A

`1/2(e^x-1)^(1//2)`

B

`e^x`

C

`e^x-1`

D

`x-y`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following: If x = log (1+ t^2), y= t- tan^(-1) t , then show that dy/dx = (frac{sqrt (e^x -1)}{2})

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2 , then dy/dx=

let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=a(t-sint), y=a(1-cost) , then (dy)/(dx) is equal to

If x= a cos^3 t, y= a sin^3 t, then dy/dx=..... A) -y/x B) - (y/x)^(1/3) C) (y/x)^3 D) - (y/x)^3