Home
Class 12
MATHS
Derivative of (log x)^x w.r.t. log x is...

Derivative of `(log x)^x` w.r.t. `log x` is

A

`x^2(log x)^x[log(log x)+1/(log x)]`

B

`x(log x)^x[log(log x)+1/(log x)]`

C

`x^3(log x)^x[log(log x)+1/(log x)]`

D

`((log x)^x)/x[log(log x)+1/(log x)]`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential coefficient of f(log_e x) w.r.t. x, where f(x) = log_e x, is

Differentiate the following w.r.t. x: log (sec 3x+ tan 3x)

Differentiate the following w.r.t. x: log sqrt((1-cos 3x)/(1+cos 3x))

Differentiate the following w.r.t. x: log sqrt((1+cos((5x)/2))/(1-cos((5x)/2)))

Differentiate 3^x w. r. t. log_(x)(3)

Differentiate the following w.r.t. x: log sqrt((1-sinx)/(1+sinx))