Home
Class 12
MATHS
If x=a sec^2 theta,y=a tan^2 theta, then...

If `x=a sec^2 theta,y=a tan^2 theta`, then `(d^2x)/(dy^2)=`

A

1

B

4

C

2a

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sec theta + tan theta, then x+1/x=.

If x=a cos^3theta,y=asin^3theta , then 1+((dy)/(dx))^2 is ___

3(sec^(2)theta+tan^(2)theta)=5

If x= cos theta , y= sin^3 theta , show that y( d^2 y)/(d x^2 ) + (dy/dx)^2 = 3 sin^2 theta (5 cos^2 theta - 1)

If x= cos theta , y= sin^3 theta , show that y ( d^2 y)/(d x^2 ) + (dy/dx)^2 = 3 sin^2 theta (5 cos^2 theta - 1)

If x= a cos theta , y= b sin theta , show that ( d^2 y)/(d x^2 ) = - b^4 /a^2y^3

Find dy/dx , if x= cosec^2 theta , y= cot^3 theta , at theta = (pi)/6

If x= sec ^(2) theta, y = tan ^(3) theta,then " at " theta=(pi)/(3) , (dy)/(dx) =