Home
Class 12
MATHS
If x=f(t),y=g(t), then (d^(2)y)/(dx^(2))...

If `x=f(t),y=g(t)`, then `(d^(2)y)/(dx^(2))` is

A

`(f'(t)*g''(t)-g'(t)*f''(t))/([f'(t)]^3)`

B

`(f'(t)*g''(t)-g'(t)*f''(t))/([f'(t)]^2)`

C

`(g'(t)*f''(t)-f'(t)*g''(t))/([f'(t)]^3)`

D

`(g'(t)*f''(t)+f'(t)*g''(t))/([f'(t)]^3)`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

IF x=2at^2,y=at^4 , then (d^2y)/(dx^2) at t=2 is

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If u = x^(2) + y^(2) " and " x = s + 3t, y = 2s - t , " then " (d^(2) u)/(ds^(2)) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to