Home
Class 11
MATHS
Solve for z: z^(2)-(3-2i)z= (5i-5)...

Solve for `z: z^(2)-(3-2i)z= (5i-5)`

Text Solution

Verified by Experts

The correct Answer is:
`z= (2+i) and (1-3i)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 1/z + 1/(2+i) = 1/(1+3i)

If z=1+i , then the argument of z^(2)e^(z-i) is

The imaginary part of z = (2+i)/(3-i) is

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

Consider the complex number z=(1+3i)/(1-2i) . Write z in the form a+ib

Consider the complex number z=(1+3i)/(1-2i) .Write z in polar form.

If Q is the image of the point P (2,3,4) under the reflection in the plane x-2y+5z=6 then the equation of the line PQ is a) (x-2)/(-1)= (y-3)/2= (z-4)/5 b) (x-2)/(1)= (y-3)/(-2)= (z-4)/5 c) (x-2)/(-1)= (y-3)/(-2)= (z-4)/5 d) (x-2)/(1)= (y-3)/(2)= (z-4)/5

Solve: x-y+2z=7 3x+4y-5z=-5 2x-y+3z=12

If z = e ^( 2pi l 3) , then 1 + z + 3z ^(2) + 2z ^(3) + 2z ^(4) + 3z ^(5) is equal to

If (5z_(2))/(11z_(1)) is purely imaginary , then the value of |(2z_(1)+3z_(2))/(2z_(1)-3z_(2))| is