Home
Class 11
MATHS
If alpha and beta are different complex ...

If `alpha and beta` are different complex numbers with `|beta|=1`, then the value of `|(beta-alpha)//(1-bar(alpha)beta)|`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are different complex numbers with absbeta = 1 , then find abs((beta-alpha)/(1-overlinealphabeta))

Suppose alpha and beta are two complex numbers so that absbeta = 1. Raju proved abs((beta-alpha)/(1-overlinealphabeta)) = 1 in the following way. Fill in the blanks and write the complete solution. abs((beta-alpha)/(1-overlinealphabeta)) = abs((beta-alpha)/(betaoverlinebeta-overlinealphabeta)) = abs((beta-alpha)/(beta(....)) = abs(...)/(absbetaabs(...)

If sinalpha=15/17 , cosbeta=12/13 and alpha and beta are in the first quadrant , find the values of sin(alpha+beta) , cos(alpha+beta) , and tan(alpha+beta)

If alpha and beta are the roots of the equation x^(2)-7x+1=0 , then the value of 1/(alpha-7)^(2)+1/(beta-7)^(2) is :

If alpha, beta are the roots of x^(2)-a(x-1)+b=0 , then find the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b)

If alpha, beta are the roots of the equation ax ^(2) + bx + c =0, then the value of (1)/( a alpha + b) + (1)/( a beta + b) equals to : a) (ac)/(b) b) 1 c) (ab)/(c) d) (b)/(ac)