Home
Class 11
MATHS
If z(1), z(2) and z(3), z(4) are two pai...

If `z_(1), z_(2) and z_(3), z_(4)` are two pairs of conjugate complex numbers, then find the vlaue of arg `(z_(1)//z_(4)) + "arg " (z_(2)//z_(3))`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If (pi)/(3) and (pi)/(4) are argument of z_(1) and bar(z)_(2) then the value of arg (z_(1)z_(2)) is

If arg (bar(z)_(1))= "arg" (z_(2)), (z ne 0) then

If z_(1) and z_(2) are two complex numbers satisfying the equation |(z_(1) + iz_(2))/(z_(1)-iz_(2))|=1 , then (z_(1))/(z_(2)) is

If the conjugate of a complex number z is (1)/(i-1) , then z is

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)

Consider the complex number z=3+4i . Write the conjugate of z.

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If |z-2|= "min" {|z-1|, |z-5|} , where z is a complex number, then