Home
Class 11
MATHS
Find the value of the expression ("cos"(...

Find the value of the expression `("cos"(pi)/(2) + "i sin "(pi)/(2)) ("cos" (pi)/(2^(2)) + "i sin "(pi)/(2^(2)))` ….to `oo`

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

One of the value of ("cos"(pi)/(6) +i "sin"(pi)/(6))^((1)/(2)) + ("cos"(pi)/(6)- i "sin"(pi)/(6))^((11)/(2)) is

((1+cos(pi/(12))+i sin ((pi)/(12)))/(1+cos (pi/(12))- i sin (pi/(12))))^(72) is equal to

cos (2pi-x) =

Find the value of sin^(-1)sin((2pi)/3)

Find the value of the following: sin^2(pi/6)+cos^2(pi/3)-tan^2(pi/4)

Show that sin ((pi)/(2)-x)=cos x

Find the value of "cos"^(2)(pi)/(16)+"cos"^(2)(3pi)/(16)+"cos"^(2)(5pi)/(16)+"cos"^(2)(7pi)/(16) .

Find the value of int_(0)^(pi//2)sin2xlogtan xdx .

Find the value of the following: 2sin^2(pi/6)+cosec^2((7pi)/3)cos((2pi)/3)

Find the derivative of (x^2 cos (pi/4))/(sin x)