Home
Class 11
MATHS
If z(1)=8+4i, z(2)=6+4i and " arg" ((z-z...

If `z_(1)=8+4i, z_(2)=6+4i and " arg" ((z-z_(1))/(z-z_(2)))= (pi)/(4)`, then z satisfies

A

`|z-7-4i|=1`

B

`|z-7-5i|=sqrt2`

C

`|z-4i|=8`

D

`|z-7i|=sqrt18`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z_1 and z_2 be complex numbers such that z_1 + i(bar(z_2) ) =0 and "arg" (bar(z_1) z_2 ) = (pi)/(3) . Then "arg"(bar(z_1)) is equal to a) (pi)/(3) b) pi c) (pi)/(2) d) (5pi)/(12)

If arg (bar(z)_(1))= "arg" (z_(2)), (z ne 0) then

If z_1=2-i,z_2=1+i Hence find abs[(z_1+z_2+1)/(z_1-z_2+i)]

If (z)_(1)=2-i , (z)_(2)=1+i , find |((z)_(1)+(z)_(2)+1)/((z)_(1)-(z)_(2)+1)|

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

If z_(1)=2+3i and z_(2)=3+2i , then |z_(1)+z_(2)| is equal to