Home
Class 11
MATHS
If a+ib=(x+i)^2/(2x^2+1), prove that a^...

If ` a+ib=(x+i)^2/(2x^2+1)`, prove that `a^2+b^2=(x^2+1)^2/(2x^2+1)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+ib = sqrt((1+i)/(1-i)) , prove that a^2+b^2=1

If x=(1+i)/sqrt2 , prove that x^2 = i

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2

Prove that 1+cos 2x=2cos^2x .

If x-iy=sqrt((a-ib)/(c-id) , prove that (x^2+y^2)^2 = (a^2+b^2)/(c^2+d^2)

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

If f(x) = log [(1+x)/(1-x)] , the prove that f[(2x)/(1+x^2)] =2f(x)

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0

If x=(1+i)/sqrt2 .Prove that x^6+x^4+x^2+1=0