Home
Class 11
MATHS
Given alpha, beta respectively the fifth...

Given `alpha, beta` respectively the fifth and the fourth non-real roots of unity, then find the value of `(1+alpha) + (1+beta) (1+ alpha^(2)) (1+beta^(2)) (1+ alpha^(4)) (1+ beta^(4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)

If alpha, beta are the roots of x^(2)-a(x-1)+b=0 , then find the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b)

If alpha and beta are the roots of the equation x^(2)-7x+1=0 , then the value of 1/(alpha-7)^(2)+1/(beta-7)^(2) is :

If alpha, beta are the roots of the equation ax ^(2) + bx + c =0, then the value of (1)/( a alpha + b) + (1)/( a beta + b) equals to : a) (ac)/(b) b) 1 c) (ab)/(c) d) (b)/(ac)

If x^(2) + px + q = 0 has the roots alpha and beta , then the value of (alpha - beta)^(2) is equal to

If sinalpha=15/17 , cosbeta=12/13 and alpha and beta are in the first quadrant , find the values of sin(alpha+beta) , cos(alpha+beta) , and tan(alpha+beta)