Home
Class 11
MATHS
What is locus of w if w= (3)/(z) and |z-...

What is locus of w if `w= (3)/(z) and |z-1| =1`?

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus z if Re (z+1)= |z-1| is

The locus of z such that |(1+iz)/(z+i)|=1 is a) y-x=0 b) y+x=0 c) y=0 d) xy=1

Suppose z = x + iy and w = (1-iz)/(z-i) Find 1 - iz and z - 1 in the standard form of a complex number.

Suppose z = x + iy and w = (1-iz)/(z-i) Find absw . If absw = 1, prove that z is purely real

Let (z, w) be two non-zero complex numbers. If z +i w = 0 and arg (z w) = pi , then arg z is equal to a) pi b) (pi)/(2) c) (pi)/(4) d) (pi)/(6)

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If |z|=1 and z ne +- 1 , then one of the possible values of arg(z)- arg (z+1)- arg (z-1) , is

The resistance of 0.1 N solution of salt is found to be 2.5 xx 10^(3) Omega . The equivalent conductance of solution (cell constant = 1.15 cm^(-1) ) in Omega^(-1) cm^(2) eq^(-1) is