Home
Class 11
MATHS
The value of Sigma(n=0)^(100) i^(n!) equ...

The value of `Sigma_(n=0)^(100) i^(n!)` equals (where `i=sqrt-1`)

A

`-1`

B

i

C

`2i+95`

D

`97+i`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Sigma_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)=-1 , is equal to

The value of sum_(r=0)^(n) (a+r+ar) (-a)^( r) is equal to

The value of (i^(18) + ((1)/(i))^(25))^(3) is equal to

The value of cos 20^(@) + cos 100^(@) + cos 140^(@) is equal to a) (1)/(2) b) (1)/(sqrt(3)) c) sqrt(3) d)0

For positive integers n_(1), n_(2) the value of the expression (1+i)^(n_(1)) + (1+ i^(3))^(n_(1)) + (1+ i^(5))^(n_(2)) + (1+ i^(7))^(n_(2)) , where i= sqrt-1 is a real number if and only if

The value of i - i^(2) + i^(3) - i^(4) +.......-i^(100) is equal to a)i b)-i c)1-i d)0