Home
Class 11
MATHS
If z(1 +a) =b+ic and a^(2)+b^(2)+c^(2)=1...

If `z(1 +a) =b+ic and a^(2)+b^(2)+c^(2)=1`, then `(1+iz)/(1-iz)`=

A

`(a+ib)/(1+c)`

B

`(b-ic)/(1+a)`

C

`(a+ic)/(1+b)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers satisfying the equation |(z_(1) + iz_(2))/(z_(1)-iz_(2))|=1 , then (z_(1))/(z_(2)) is

If z _(r) = cos ((pi)/(2 ^(r))) + i sin ((pi )/( 2 ^(r))), then z _(1) . z _(2). z _(3)... upto oo equals : a)-3 b)-2 c)-1 d)0

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

If the square of the matrix [[a,b],[a,-a]] is the unit matrix, then b is equal to a) (a)/(1+a^(2)) b) (1-a^(2))/(a) c) (1+a^(2))/(a) d) (a)/(1-a^(2))

If a, b, c are in AP and a^(1/x)=b^(1/y)=c^(1/z) prove that x, y, z are in AP.

If (z)_(1)=2-i , (z)_(2)=1+i , find |((z)_(1)+(z)_(2)+1)/((z)_(1)-(z)_(2)+1)|

If A+ B + C = pi, then cos^(2) A + cos ^(2) B + cos ^(2) C is equal to : A) 1 - cos A cos B cos C B) 1 - 2 cos A cos B cos C C) 2 cos A cos B cos C D) 1 + cos A cos B cos C

If a, b and c are distinct reals and the determinant |{:(a ^(3) +1, a ^(2) , a ),( b ^(3) +1, b ^(2) , b ),( c ^(3) +1, c ^(2), c):}|= 0, then the product abc is