Home
Class 11
MATHS
If a+ib= (c+i)/(c-i), where c is real, t...

If `a+ib= (c+i)/(c-i)`, where c is real, then `(b)/(a)`

A

`(c )/(c^(2)-1)`

B

`(2c)/(c^(2)-1)`

C

`(2c)/(c^(2)+1)`

D

`(c )/(c^(2)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the imaginary part of (2 + i)/(ai - 1) is zero, where a is a real number, then the value of a is equal to a) (1)/(2) b)2 c) -(1)/(2) d)-2

If (b + c) (y + z) - ax = b - c, (c + a) (z + x) - by = c - a and (a + b) (x + y) - cz = a - b , where a + b + c ne 0, then x is equal to a) (c + b)/(a + b + c) b) (c - b)/(a + b + c) c) (a - b)/(a + b + c) d) (a + b)/(a + b + c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If a+ib = sqrt((1+i)/(1-i)) , prove that a^2+b^2=1

If (a+ib) (c+id) (e+if) (g+ih) = A+iB, then show that (a^2+b^2) (c^2+d^2) (e^2+f^2) (g^2+h^2) = A^2+B^2

A skew - symmetric matrix S satisfies the relation S^(2) + I = 0 , where I is a unit matrix , then S is a)Idempotent b)Orthogonal c)Involuntary d)None of these

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))

Let z=(11-3i)/(1+i) . If alpha is a real number such that z-ialpha is real, then the value of alpha is a)4 b)-4 c)7 d)-7