Home
Class 11
MATHS
The modulus of sqrt2i- sqrt(-2)i is...

The modulus of `sqrt2i- sqrt(-2)i` is

A

A) 2

B

B) `sqrt2`

C

C) 0

D

D) `2sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

a) sqrt3 sqrt3 = b) What is the product of( sqrt3 + sqrt2 and sqrt3 - sqrt2 ) c)What is the reciprocal of sqrt3 + sqrt2 ?

The value of sqrt(4+2sqrt(3))-sqrt(4-2sqrt(3)) is

If I=intsqrt((5-x)/(2+x))dx , then I equals a) sqrt(x+2)sqrt(5-x)+3sin^(-1)sqrt((x+2)/(3))+C b) sqrt(x+2)sqrt(5-x)+7sin^(-1)sqrt((x+2)/(7))+C c) sqrt(x+2)sqrt(5-x)+5sin^(-1)sqrt((x+2)/(5))+C d)None of these

The real part of (i- sqrt3)^(13) is a) 2^(-10) b) 2^(12)sqrt3 c) 2^(-12) d) -2^(12)sqrt3

The modulus of (1+i)/(1-i) - (1-i)/(1+i) is

The modulus and amplitude of (1+ sqrt3i)^(8) are respectively

Write the following complex numbers in polar form -3sqrt2+3 sqrt2i

Find the modulus of (1+i)/(1-i) - (1-i)/(1+i)

If (sqrt(5)+sqrt(3)i)^(33)=2^(49)z , then modulus of the complex number z is equal to a)1 b) sqrt(2) c) 2sqrt(2) d)4