Home
Class 11
MATHS
If (w- bar(w)z)/(1-z) is purely real whe...

If `(w- bar(w)z)/(1-z)` is purely real where `w= alpha + ibeta, beta ne 0 and z ne 1`, then the set of the values of z is

A

`[z:|z|=1]`

B

`[z:z= bar(z)]`

C

`[z:z ne 1]`

D

`[z: |z|=1, z ne 1]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If z+ sqrt2 |z+1| +ii=0 then the value of |z|^(2) is

Let omega ne 1 be cube root of unity and (1 + omega ) ^(7)= a + omega. Then the value of a is

If z= r (cos theta + i sin theta) , then the value of (z)/(bar(z)) + (bar(z))/(z) is

If |z - (3)/(z)| = 2 , then the greatest value of |z| is a)1 b)2 c)3 d)4

Let w ne pm 1 be a complex number. If |w| =1 and z = (w -1)/(w +1), then R (z) is equal to

If (z-i)/(z+i) (z ne -i) is a purely imaginary number, then z. bar(z) is equal to

If |z|=1 and z ne +- 1 , then one of the possible values of arg(z)- arg (z+1)- arg (z-1) , is