Home
Class 11
MATHS
If |z-2|= "min" {|z-1|, |z-5|}, where z ...

If `|z-2|= "min" {|z-1|, |z-5|}`, where z is a complex number, then

A

A) Re (z) `=(3)/(2)`

B

B) Re `(z)= (7)/(2)`

C

C) Re (z) `in {(3)/(2), (7)/(2)}`

D

D) None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If z^(2) + z + 1 = 0 where z is a complex num ber, then (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2) equal

The system of equation {:(|z+1-i|=2),(Re(z) ge 1):}} , where z is a complex number has

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)

Suppose z = x + iy and w = (1-iz)/(z-i) Find 1 - iz and z - 1 in the standard form of a complex number.

If z is a complex number such that Re (z) = Im (z), then :

If |z+ bar(z)|+ |z-bar(z)| =2 , then z lies on

If (z-i)/(z+i) (z ne -i) is a purely imaginary number, then z. bar(z) is equal to

In the figure , Z represents a complex number. Write the complex number in polar form.

In the above figure , Z represents a complex number. Find the multiplicative inverse of Z in the form a+ib