Home
Class 11
MATHS
If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4), ...

If `z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4)`, then arg(z)=

A

A) `(5pi)/(6)`

B

B) `-(pi)/(6)`

C

C) `(3pi)/(2)`

D

D) `(7pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt3+sqrt2)^(4)- (sqrt3-sqrt2)^(4) =

If z=(pi)/(4) (1+i)^(4) ((1- sqrtpi i)/(sqrtpi + i) + (sqrtpi -i)/(1+ sqrtpi i)) , then ((|z|)/("arg"(z))) equals

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

If z _(1) = 2 sqrt2 (1 + i) and z _(2) = 1 + isqrt3, then z _(1) ^(2) z _(2) ^(3) is equal to

If (sqrt8 +i)^(50) = 3^(49) (a+ib), " then " a^(2)+b^(2) is :

If (sqrt(5)+sqrt(3)i)^(33)=2^(49)z , then modulus of the complex number z is equal to a)1 b) sqrt(2) c) 2sqrt(2) d)4

If z = ((sqrt3 + i) ^(3) ( 3i + 4) ^(2))/( ( 8 + 6 i ) ^(2)), then |z| is equal to

Prove that (1 + sqrt3i)^n + (1 - sqrt3i)^n = 2^(n+1) cos ((npi)/3) for any positive integer n