Home
Class 11
MATHS
One of the value of ("cos"(pi)/(6) +i "...

One of the value of `("cos"(pi)/(6) +i "sin"(pi)/(6))^((1)/(2)) + ("cos"(pi)/(6)- i "sin"(pi)/(6))^((11)/(2))` is

A

A) 1

B

B) 2

C

C) 3

D

D) 0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of "cos"^(2)(pi)/(16)+"cos"^(2)(3pi)/(16)+"cos"^(2)(5pi)/(16)+"cos"^(2)(7pi)/(16) .

Find the value "cos"(pi)/(11)+"cos"(3pi)/(11)+"cos"(5pi)/(11)+"cos"(7pi)/(11)+"cos"(9pi)/(11)

If z_(1) = sqrt(2)(cos""(pi)/(4) + "" i sin""(pi)/(4)) and z_(2) = sqrt(3)(cos""(pi)/(3) + i sin""(pi)/(3)) , then |z_(1)z_(2)| is

((1+cos(pi/(12))+i sin ((pi)/(12)))/(1+cos (pi/(12))- i sin (pi/(12))))^(72) is equal to

The real part of [1 + cos ((pi )/(5)) + i sin ((pi)/(5)) ]^(-1) is :

The principal argument of the complex number z = (1+ sin""(pi)/(3) + icos""(pi)/(3))/(1+sin""(pi)/(3) - i cos ""(pi)/(3)) is

cos^(4) ""(pi)/(12) - sin^(4)"" (pi)/(12) is equal to

The value of sin^(-1){cos(4095^(@))} is equal to a) -(pi)/(3) b) (pi)/(6) c) -(pi)/(4) d) (pi)/(4)

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to