Home
Class 11
MATHS
z^(2) + alpha z + beta= 0 (alpha, beta a...

`z^(2) + alpha z + beta= 0` (`alpha, beta` are complex numbers) has a real root, then

A

`(alpha + bar(alpha)) (alpha bar(beta)+ bar(alpha)beta) + (beta- bar(beta))^(2)= 0`

B

`(alpha + bar(alpha)) (beta- bar(beta))^(2)=0`

C

`(bar(alpha) -alpha) (alpha bar(beta)- bar(alpha) beta)= (beta- bar(beta))^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a+b, y=a alpha + b beta and z= alpha beta + b alpha , where alpha and beta are complex cube roots of unity, then xyz=

If alpha and beta are different complex numbers with absbeta = 1 , then find abs((beta-alpha)/(1-overlinealphabeta))

Suppose alpha and beta are two complex numbers so that absbeta = 1. Raju proved abs((beta-alpha)/(1-overlinealphabeta)) = 1 in the following way. Fill in the blanks and write the complete solution. abs((beta-alpha)/(1-overlinealphabeta)) = abs((beta-alpha)/(betaoverlinebeta-overlinealphabeta)) = abs((beta-alpha)/(beta(....)) = abs(...)/(absbetaabs(...)

If A_(alpha)=[(cos alpha,sinalpha),(-sinalpha,cosalpha)] then A_(alpha) A_(beta) is equal to A) A_(alpha beta) B) A_(alpha +beta) C) A_(alpha - beta) D)None of these

z_(1) and z_(2) be two complex numbers with alpha and beta as their principal arguments, such that alpha + beta gt pi , then principal Arg (z_(1) z_(2)) is

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta

Let alpha_(1),alpha_(2) and beta_(1),beta_(2) be the roots of ax^(2) + bx + c = 0 and px^(2) + qx + r = 0 respectively. If the system of equations alpha_(1)y + alpha_(2)z= 0 and beta_(1) y + beta_(2) z = 0 has a non - trivial solution, then a) b^(2) pr = q^(2) ac b) bpr^(2) = qac^(2) c) bp^(2)r = qa^(2)c d)None of these