Home
Class 11
MATHS
If z lies on the circle |z-1|=1, then (z...

If z lies on the circle `|z-1|=1`, then `(z-2)/(z)` equals

A

0

B

2

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) lies on the circle |z|=3 and x+iy =z_(1) + (1)/(z_(1)) then locus of z is

When |z|=1 , the point 1+2z lie on a

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

If z=(pi)/(4) (1+i)^(4) ((1- sqrtpi i)/(sqrtpi + i) + (sqrtpi -i)/(1+ sqrtpi i)) , then ((|z|)/("arg"(z))) equals

If (z-i)/(z+i) (z ne -i) is a purely imaginary number, then z. bar(z) is equal to

If z=sqrt3+i , then the argument of z^2 e^(z-i) is equal to

If z^(2) + z + 1 = 0 where z is a complex num ber, then (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2) equal