Home
Class 11
MATHS
If y(1)= max ||z- omega |-|z- omega^(2)|...

If `y_(1)`= max `||z- omega |-|z- omega^(2)||`, where |z|=2 and `y_(2)` =max `||z- omega|- |z-omega^(2)||`, where `|z| =(1)/(2) and omega and omega^(2)` are complex cube roots of unity, then

A

`y_(1)= sqrt3, y_(2)= sqrt3`

B

`y_(1) lt sqrt3 , y_(2)= sqrt3`

C

`y_(1)= sqrt3, y_(2) lt sqrt3`

D

`y_(1) gt 3, y_(2) lt sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2- omega)(2- omega^(2)) + 2.(3-omega) (3-omega^(2)) + …+ (n-1)(n- omega)(n- omega^(2)) , where omega is an imaginary cube root of unity is

The value of (2 - omega) (2- omega ^(2)) (2-omega^(10)) (2- omega ^(11)) where omega is the complex cube root of unity, is : a)49 b)50 c)48 d)47

If x= a+ b, y = a omega + b omega^(2), z= a omega^(2) + b omega , then the value of x^(3) + y^(3) + z^(3) is equal to (where omega is imaginary cube root of unity)

Using properties, prove that |[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]|=0 where omega is a complex cube root of unity.

The value of |(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3)),(3,3omega^(3),6omega^(4))| is equal to (where omega is imaginary cube root of unity

If |z-2|= "min" {|z-1|, |z-5|} , where z is a complex number, then

If omega is an imaginary cube root of unity, then (1 + omega - omega^(2))^(7) is equal to

If omega ne 1 and omega^3=1 then (a omega+b+c omega^2)/(a omega^2+b omega+c)+(a omega^2+b+c omega)/(a+b omega+ c omega^2) is equal to a)2 b) omega c) 2 omega d) 2 omega^2