Home
Class 11
MATHS
Number of complex numbers z satisfying |...

Number of complex numbers z satisfying `|2z|=|2z-1|= |2z+1|` is equal to

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be complex numbers satisfying |z_(1)|=|z_(2)|=2 and |z_(1)+z_(2)|=3 . Then |(1)/(z_(1))+(1)/(z_(2))|=

The modulus of the complex number z such that |z+3-i| = 1 and arg(z) = pi is equal to

Let the complex number z satisfy the equation |z+4i|=3 . Then the greatest and least values of |z+3| are

Let x_1 and y_1 be real numbers. If z_1 and z_2 are complex numbers such that |z_1| = |z_2|=4 , then |x_1 z_1 - y_1 z_2|^(2) + |y_1 z_1 + x_1 z_2 |^(2) is equal to

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

The points representing the complex numbers z for which |z+4|^(2)-|z-4|^(2) = 8 lie on

If z_(1) and z_(2) are two complex numbers satisfying the equation |(z_(1) + iz_(2))/(z_(1)-iz_(2))|=1 , then (z_(1))/(z_(2)) is

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n

Consider the complex number z_1 = 3+i and z_2 = 1+i .What is the conjugate of z_2 ?

Let i= sqrt-1 . If a sequence of complex numbers is defined by z_(1)=0, z_(n+1)= z_(n)^(2)+i for n ge 1 , then find the value of z_(111) .