Home
Class 11
MATHS
If |z-(4)/(Z)|=2, then the maximum value...

If `|z-(4)/(Z)|=2`, then the maximum value of |Z| is equal to

A

`sqrt3+1`

B

`sqrt5+1`

C

2

D

`2+sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z| le 4 then the maximum value of |iz+3-4i| is equal to

If |z - (3)/(z)| = 2 , then the greatest value of |z| is a)1 b)2 c)3 d)4

If the two lines (x-1)/(2) = (1-y)/(-a) = (z)/(4) and (x-3)/(1) = (2y-3)/(4) = (z-2)/(2) are perpendicular, then the value of a is equal to

If z+ sqrt2 |z+1| +ii=0 then the value of |z|^(2) is

If z=sqrt3+i , then the argument of z^2 e^(z-i) is equal to

If |z+bar(z)|= |z-bar(z)| , then the locus of z is

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If |z+ bar(z)|+ |z-bar(z)| =2 , then z lies on

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

If z_(1)=2+3i and z_(2)=3+2i , then |z_(1)+z_(2)| is equal to