Home
Class 11
MATHS
A value of theta for which (2+ 3i sin th...

A value of `theta` for which `(2+ 3i sin theta)/(1-2i sin theta)` purely imaginary , is

A

`(pi)/(6)`

B

`sin^(-1) ((sqrt3)/(4))`

C

`sin^(-1) ((1)/(sqrt3))`

D

`(pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find real theta such that (3+2 i sin theta)/(1-2 i sin theta) is purely real:

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

Prove that (sin2theta)/(1-cos2theta)=cottheta

Solve sqrt 2+sin theta=cos theta .

Solve sin2theta+costheta=0

Prove that (sin2theta)/(1+cos2theta)=tantheta

The value of theta in the range 0 lt= theta lt= (pi)/(2) which satisfies the equation sin ( theta +(pi)/(6)) = cos theta is equal to

if cos theta_(1) + cos theta_(2) + cos theta_(3)= sin theta_(1) + sin theta_(2) + sin theta_(3)= 0 , then the value of cos (theta_(1) + theta_(2)) + cos (theta_(2) + theta_(3)) + cos (theta_(3) + theta_(1)) is