Home
Class 11
MATHS
Let omega be a complex number such that ...

Let `omega` be a complex number such that `2omega +1= z` where `z= sqrt-3`. If `|(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k`, then k is equal to

A

1

B

`-z`

C

z

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding at any stage, prove that the value of the following determinant is zero. |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| , where omega is cube root of unity

The value of |(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3)),(3,3omega^(3),6omega^(4))| is equal to (where omega is imaginary cube root of unity

IF 1, omega , omega^2 are the cube roots of unity and if [{:(1+omega,2 omega),(-2 omega,-b):}]+[{:(a,-omega),(3 omega,2):}]=[{:(0, omega),(omega,1):}] then a^2+b^2 is equal to

Let w ne pm 1 be a complex number. If |w| =1 and z = (w -1)/(w +1), then R (z) is equal to

Let zne1 be a complex number and let omega=x+iy,yne0 . If (omega-baromegaz)/(1-z) is purely real, then |z| is equal to a) |omega| b) |omega|^(2) c) (1)/(|omega|^(2)) d)1

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

If omega is a complex cube root of unity, then value of Delta=|(a_(1)+b_(1)omega,a_(1)omega^(2)+b_(1),c_(1)+b_(1)omega),(a_(2)+b_(2)omega,a_(2)omega^(2)+b_(2),c_(2)+b_(2)omega),(a_(3)+b_(3)omega,a_(3)omega^(2)+b_(3),c_(3)+b_(3)omega)| is a)0 b)-1 c)2 d)None of these

If omega is a cube root of unity, then find (3+5omega+3omega^(2))^(2)+ (3 +3omega+5omega^(2))^(2)