Home
Class 11
MATHS
If S = (2^(2)-1)/(2)+(3^(2)-2)/(6)+(4^(2...

If S `= (2^(2)-1)/(2)+(3^(2)-2)/(6)+(4^(2)-3)/(12)+ cdots` upto 10 terms then S is equal to

A

A) `(123)/(11)`

B

B) `(10)/(11)`

C

C) `(13)/(11)`

D

D) `(120)/(11)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum 1^(2) + (1^(2)+2^(2))+ (1^(2)+2^(2)+3^(2))+ cdots up to 22 nd term.

The sum of i-2-3i+4 cdots upto100 terms where i= sqrt(-1) is

i^(2)+ i^(4) +i^(6) +……" upto " (2k + 1) terms , k in N is :

Elements a, b, c, d and e have the following electronic configuration (a) 1s^(2)2s^(2)2p^(1) (b) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(1) (c) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(3) (d) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(5) (e) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(6)4s^(2) Which among these will belong to the same group in the periodic table ? a & d, b&c, a & b, a & e

If S denotes the sum to infinity and S_(n) , denotes the sum of n terms of the series 1+(1)/(2)+(1)/(4) + (1)/(8)+ cdots , such that S-S_(n) lt (1)/(100) , then the least value of n is

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+cdots "to" oo = (pi^(2))/(6) then (1)/(1^(2)) +(1)/(3^(2))+(1)/(5^(2))+cdots equals

Let S_(1), S_(2),…, S_(101) be consecutive terms of an AP. If (1)/(S_(1)S_(2)) + (1)/(S_(2)S_(3)) +...+ (1)/(S_(100)S_(101)) = (1)/(6) and S_(1) + S_(101) = 50 , then |S_(1) - S_(101)| is equal to a)10 b)20 c)30 d)40

Consider the reactions: 2S_2O_3^(2-) (aq) + I_2 (s) rarr S_4O_6^(2-) (aq) +2I^(-) (aq) S_2O_3^(2-)(aq) +2 Br_2 (I) harr 5H_2O (I) rarr 2SO_4^(2-) (aq)+ 4Br^(-) (aq) +10H^(+) (aq) Why does the same reductant, thiosulphate react differently with iodine and bromine ?

Which electronic configuration does not follow the Aufbau rule? : 1s^(2)2s^(2)2p^(6) ; 1s^(2)2s^(2)2p^(4)3s^(2) ; 1s^(2) ; None of these

The sets S_(1),S_(2),S_(3),… are given by S_(1)={(2)/(1)} , S_(2)={(3)/(2),(5)/(2)} , S_(3)={(4)/(3),(7)/(3),(10)/(3)} , S_(4)={(5)/(4),(9)/(4),(13)/(4),(17)/(4)},... Then, the sum of the numbers in the set S_(25) is