Home
Class 11
MATHS
If a, b, c, d are in G.P., then (a^(3) +...

If a, b, c, d are in G.P., then `(a^(3) + b^(3))^(-1), (b^(3) + c^(3))^(-1)(c^(3) +d^(3))^(-1)` are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P. then a^(3) +c^(3) - 8b^(3) is equal to

If a, b and c are distinct reals and the determinant |{:(a ^(3) +1, a ^(2) , a ),( b ^(3) +1, b ^(2) , b ),( c ^(3) +1, c ^(2), c):}|= 0, then the product abc is

The value of the determinant |(bc,ac,ab),(a,b,c),(a^(3),b^(3),c^(3))| is a)(a + b + c) b)a + b + c -ab c) (a^(2) - b^(2))(b^(2) - c^(2)) (c^(2) - a^(2)) d) a^2+b^2+c^2

The value of the determinant |(bc,ca,ab),(a^(3),b^(3),c^(3)),((1)/(a),(1)/(b),(1)/(c))| is

The sum of the coefficients in the expansion of (x^(2)-(1)/(3))^(199) xx (x^(3) + (1)/(2))^(200) is A) (1)/(3) B) -(1)/(3) C) (2)/(3) D) (3)/(2)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If a, b, c are in A.P, b, c, d are in G.P. and 1/c , 1/d,1/e are in A. P . Prove that a, c, e are in G.P.

The order and degree of the differential equation ((d^(3)y)/(dx^(3)))^(1//3)=2(d^(2)y)/(dx^(2))+root3(cos^(2)x) are, respectively a)3 and 1 b)3 and 3 c)1 and 3 d)3 and 2

Elements a, b, c, d and e have the following electronic configuration (a) 1s^(2)2s^(2)2p^(1) (b) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(1) (c) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(3) (d) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(5) (e) 1s^(2)2s^(2)2p^(6)3s^(2)3p^(6)4s^(2) Which among these will belong to the same group in the periodic table ? a & d, b&c, a & b, a & e