Home
Class 11
MATHS
For any odd integer n gt= 1 n^(3) - (n...

For any odd integer `n gt= 1`
`n^(3) - (n-1)^(3) + cdots +(-1)^(n-1) 1^(3)` =

A

`(1)/(4) (n+1)^(2) (2n-1)`

B

`(1)/(4) (2n-1) n^(2)`

C

`(1)/(4) (n+ 1)^(2) (2n+1)`

D

`(1)/(4) (2n+1)n^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

find a_9ifa_n=(-1)^(n-1)n^3

If H_(n) =1+(1)/(2)+ cdots + (1)/(n) then value of S_(n) =1 + (3)/(2) + (5)/(3) +cdots + (2n-1)/(n) is

If y=(1+1/x)(1+2/x)(1+3/x)…(1+n/x) and x ne 0," then "(dy)/(dx) when x = -1 is :a)n! b) (n-1)! c) (-1)^(n)(n-1)! d) (-1)^(n)n!

Find the sum of the series 1.n + 2 .(n-1) + 3.(n-2) + cdots + ( n-1) .2 + n.1.

Find the sum 1+(1)/(1+2) + (1)/(1+2+3) + cdots+ (1)/(1+2+3+cdots+ n )

The sum of (x+2)^(n-1)+ (x+2)^(n-2) (x+1) + (x+2)^(n-3) (x+1)^(2) + cdots + (x+1)^(n-1) is equal to

For positive integers n_(1), n_(2) the value of the expression (1+i)^(n_(1)) + (1+ i^(3))^(n_(1)) + (1+ i^(5))^(n_(2)) + (1+ i^(7))^(n_(2)) , where i= sqrt-1 is a real number if and only if

Find the sum to n terms of the series 1//(1xx2) + 1//(2xx3) + 1//(3xx4) + cdots + 1//n(n+1).