Home
Class 11
MATHS
If sum(r=1)^(n) r^(4) = I(n) then sum(r=...

If `sum_(r=1)^(n) r^(4) = I(n)` then `sum_(r=1)^(n) (2r-1)^(4)` is equal to

A

I (2n)-I(n)

B

I (2n) - 16 I (n)

C

I (2n) - 8 I (n)

D

I (2n) - 4I (n)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r.r ! is equal to

The value of sum_(r=0)^(n) (a+r+ar) (-a)^( r) is equal to

If sum_(r=1)^(n) T_(r) = n(2n^(2)+9n +13) then find sum_(r=1)^(n) sqrt(T_(r)) .

Find the sum sum _(r=1)^(n) (r )/((r+1)!)

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

The standard deviation of n observations x_(1), x_(2), …, x_(n) is 2. If sum_(i=1)^(n)x_(i)=20 and sum_(i=1)^(n)x_(i)""^(2)=100 , then n is : a) 10 or 20 b) 5 or 10 c)5 or 20 d) 5 or 15