Home
Class 11
MATHS
If sum(r=1)^(n) (r^(4)+r^(2)+1)/(r^(4)+r...

If `sum_(r=1)^(n) (r^(4)+r^(2)+1)/(r^(4)+r)= (675)/(26)` then n is equal to

A

10

B

15

C

25

D

30

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r.r ! is equal to

Find the sum sum _(r=1)^(n) (r )/((r+1)!)

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

If sum_(r=1)^(n) T_(r) = n(2n^(2)+9n +13) then find sum_(r=1)^(n) sqrt(T_(r)) .

If P(n,r)=1680 and C(n,r) =70, then 69n +r! is equal to :

The value of sum_(r=0)^(n) (a+r+ar) (-a)^( r) is equal to