Home
Class 11
MATHS
S(n)= (1)/(1^(3))+(1+2)/(1^(3)+2^(3)) + ...

`S_(n)= (1)/(1^(3))+(1+2)/(1^(3)+2^(3)) + cdots + ((1+2)+ cdots+ n)/(1^(3)+2^(3)+ cdots + n^(3) ), n =1 ,2,3, cdots ` then `S_(n)` is not greater than

A

2

B

1

C

`(1)/(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum 1+(1)/(1+2) + (1)/(1+2+3) + cdots+ (1)/(1+2+3+cdots+ n )

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+cdots "to" oo = (pi^(2))/(6) then (1)/(1^(2)) +(1)/(3^(2))+(1)/(5^(2))+cdots equals

If H_(n) =1+(1)/(2)+ cdots + (1)/(n) then value of S_(n) =1 + (3)/(2) + (5)/(3) +cdots + (2n-1)/(n) is

lim_(n to infty)(1^(2)/(1-n^(3))+2^(2)/(1-n^(3))+…+n^(2)/(1-n^(3))) is equal to :

Find the sum of the series (1^(3))/(1) + (1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+ cdots up to n terms .

If S = (2^(2)-1)/(2)+(3^(2)-2)/(6)+(4^(2)-3)/(12)+ cdots upto 10 terms then S is equal to

If a_(1) , a_(2), a_(3) , cdots ,a_(n) are in A.P. with a_(1) =3, a_(n) =39 and a_(1) +a_(2) + cdots +a_(n) =210 then the value of n is equal to

If a , a_(1) , a_(2) ,a_(3) , cdots a_(2n), b are in A.P. and a, g_(1) , g_(2) , g_(3) , cdots , g_(2n), b are in G.P. and h is the H.M of a and b then prove that (a_(1)+a_(2n))/(g_(1)g_(2n))+(a_(2)+a_(2n-1))/(g_(2)g_(2n-1))+cdots+ (a_(n)+a_(n+1))/(g_(n)g_(n+1))=(2n)/(h)

Let t_(n) , n = 1,2,3,cdots be the n^(th) term of the A.P. 5,8,11, cdots . Then the value of n for which t_(n) = 305 is

Find the sum 1^(2) + (1^(2)+2^(2))+ (1^(2)+2^(2)+3^(2))+ cdots up to 22 nd term.