Home
Class 11
MATHS
The maximum value of (cosalpha(1))(cosal...

The maximum value of `(cosalpha_(1))(cosalpha_(2))...(cosalpha_(n))` under the restrictions `0lealpha_(1),alpha_(2),...,alpha_(n)lepi//2and(cotalpha_(1))(cotalpha_(2))...(cotalpha_(n))=1` is

A

a) `1//2^(n//2)`

B

b) `1//2^(n)`

C

c) `1//2n`

D

d) 1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha_(1), alpha_(2), alpha_(3), alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 , then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4)) is :

If f(alpha)=|{:(1,alpha,alpha^(2)),(alpha,alpha^(2),1),(alpha^(2),1,alpha):}| , then f(root(3)(3)) is equal to

If (3pi)/(4)ltalphaltpi , then sqrt(2cotalpha+(1)/(sin^(2)alpha)) is equal to

using cotA-tanA=2cot2A deduce that tanalpha+tan2 alpha+4tan4alpha+8cot8alpha=cotalpha

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx,alpha!=npi,nin Z is equal to a) -2" cosec "alpha(cosalpha-tanxsinalpha)^(1//2)+C b) -2(cosalpha+cotxsinalpha)^(1//2)+C c) -2" cosec "alpha(cosalpha+cotxsin alpha)^(1//2)+C d) -2" cosec "alpha(sinalpha+cotxcosalpha)^(1//2)+C

The value of int_(0)^(pi//2)sin|2x-alpha|dx , where alphain[0,pi] , is a) 1-cosalpha b) 1+cosalpha c)1 d) cosalpha

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) . prove that one of the value of "tan"(theta)/(2) is "tan"(alpha)/(2)"cot"(beta)/(2) .

If cosalpha+cosbeta=0=sinalpha+sinbeta,cos2alpha+cos2beta is equal to a) -2sin(alpha+beta) b) 2cos(alpha+beta) c) 2sin(alpha-beta) d) -2cos(alpha+beta)