Home
Class 11
MATHS
The minimum value of the function ...

The minimum value of the function
`f(x)=(sinx)/(sqrt(1-cos^(2))x)+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1))` whenever it is defined is

A

A) 4

B

B) `-2`

C

C) 0

D

D) 2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

Integrate the following functions: sin^-1x/(sqrt(1-x^2)

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Find f'(x) .

Integrate the following functions (xcos^-1x)/sqrt(1-x^2)

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Differentiate w.r.t x the functions cot ^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If f(x)=x/(sqrt((1+x^2))) then (fofof) (x) =

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)