Home
Class 11
MATHS
Let 0ltxltpi//4 , then (sec2x-tan2x) eq...

Let `0ltxltpi//4` , then `(sec2x-tan2x)` equals

A

a) `tan(x-(pi)/(4))`

B

b) `tan((pi)/(4)-x)`

C

c) `tan(x+(pi)/(4))`

D

d) `tan^(2)(x+(pi)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=tanx-tan^(3)x+tan^(5)x-…" to "infty with 0 lt x ltpi/4 , then int_(0)^(pi/4)f(x)dx is equal to :

If tan ((theta)/(2)) = (2)/(3) , then sec theta is equal to

If (sinx)/(siny)=(1)/(2),(cosx)/(cosy)=(3)/(2) , where x,y in (0,(pi)/(2)) , then the value of tan (x+y) is equal to

Differentiate (x+sec x)(x-tan x)

If 0 lt x lt (pi)/(2) , then find tan ((pi)/(4)+ (x)/(2) ) + tan ((pi)/(4) - (x)/(2) )

If theta is the angle between the pair of straight lines x^(2)-5xy+4y^(2) + 3x-4=0 , then tan^(2) theta is equal to

If cosx=(2cosy-1)/(2-cosy) , where x,y in(0,pi) , then "tan"(x)/(2)"cot"(y)/(2) is equal to

Let y = tan^(-1) (sec x + tan x) . Then , (dy)/(dx) is equal to

For the function, f(x)=sin2x, 0ltxltpi . Find the local maximum and local minimum value.